Description

Silver nanoparticle-based electrodes were studied extensively in recent years as an electrode material for wearable and flexible electronics due to their stability and conductivity. A wet chemical deposition technique is considered as a low-cost scalable technique. The current wet chemical-based nanoparticle deposition techniques include electrospray deposition, drop-casting, spin coating, and inkjet printing process. These techniques generally require a separate post-deposition annealing step. This can be a problem for substrates with a low melting point. In addition, some of the above-mentioned methods require physical contact, which increases the probability of cross-contamination.

In this research, we present a technique that combines electrospray and laser radiation to deposit and sinter nanoparticles simultaneously on a rigid or flexible substrate. In this process, the microdroplets of aqueous silver nanoparticle suspension ejected in what is known as the microdripping mode from a metallic capillary nozzle, which can be controlled by an electric potential. A conical hollow laser beam is used to vaporize the liquid and sinter the nanoparticles at desired locations on a substrate. This is a promising technique compared to the traditional methods to fabricate conductive micropatterns due to its simplified one step deposition, suppressed cross-contamination, and applicability to various surfaces. Thin-film micro patterns of silver nanoparticles were fabricated using a Nd:YAG  laser with powers from 5 W to 13 W. The correlation between the grain size distribution, composition, and electrical resistivity was studied using SEM (Scanning Electron Microscope), EDX (Energy Dispersive X-ray), and four-point probe analysis. The results are comparable to the conventional thermal sintering method.

Contributing Authors

  • Pawan Pathak
    University of Central Florida
  • Eduardo A. Castillo
    University of Central Florida | Escuela Superior Politécnica del Litoral
  • Ranganathan Kumar
    University of Central Florida
  • Aravinda Kar
    University of Central Florida
  • Hyoung J. Cho
    University of Central Florida
Aravinda Kar
University of Central Florida
Track: Laser Materials Microprocessing
Session: Micro Session III
Day of Week: Monday
Date/Time:
Location:

Keywords

  • Electric Conductivity
  • Electrospray
  • Silver Nanoparticle