Description

Laser welding is one of the most promising joining techniques to realize hybrid joints between metals and polymers in order to achieve weight reduction and functionalization of the parts. The surface treatment of the metal has a decisive effect on the joint quality and thus on the mechanical properties. In the present study, different mechanical and laser-assisted surface treatments have been investigated to develop diverse surface conditions on aluminum. Abrasive blasting and laser ablation were used to increase the surface roughness, while abrasive polishing and laser polishing were applied to minimize the surface roughness. In contrast to abrasive surface treatments, laser-assisted ones were implemented to create artificial oxide layers on aluminum surface. The surface structures of pre-treated samples have been studied with scanning electron microscopy and roughness test. The laser welding between pre-treated aluminum and polyamide was achieved with heat conduction joining technique. To enlarge the welding area and control the generated heat, spatial and temporal modulations of the laser beam were implemented. Finally, single lap tensile-shear test, microscopic analysis of fractured surfaces and welding cross sections were employed to evaluate the joints. Results show that the presence of an artificial aluminum oxide layer and low roughness are essential to achieve a superior joint between aluminum and polyamide. The cross-section of the superior joint which is the laser polished aluminum welded to polyamide is studied with transmission electron microscopy.

Contributing Authors

  • Mahdi Amne Elahi
    University of Luxembourg
  • Marcus Koch
    Leibniz Institute for New Materials
  • Peter Plapper
    University of Luxembourg
Mahdi Amne Elahi
University of Luxembourg
Track: Laser Materials Macroprocessing
Session: Non-metal Processing
Day of Week: Tuesday
Date/Time:
Location:

Keywords

  • Abrasive Blasting
  • Laser Ablation
  • Laser Polishing
  • Laser-Assisted Aluminum-Polyamide Welding
  • Surface Treatment